
Why is a Ravencoin Like a TokenDesk?
An Exploration of Code Diversity in the

Cryptocurrency Landscape

Pierre Reibel1, Haaroon Yousaf1, and Sarah Meiklejohn1

University College London
{pierre.reibel.16,h.yousaf,s.meiklejohn}@ucl.ac.uk

Abstract. Interest in cryptocurrencies has skyrocketed since their in-
troduction a decade ago, with hundreds of billions of dollars now invested
across a landscape of thousands of different cryptocurrencies. While there
is significant diversity, there is also a significant number of scams as
people seek to exploit the current popularity. In this paper, we seek to
identify the extent of innovation in the cryptocurrency landscape using
the open-source repositories associated with each one. Among other find-
ings, we observe that while many cryptocurrencies are largely unchanged
copies of Bitcoin, the use of Ethereum as a platform has enabled the de-
ployment of cryptocurrencies with more diverse functionalities.

1 Introduction

Since the introduction of Bitcoin in 2008 [22] and its deployment in January 2009,
cryptocurrencies have become increasingly popular and subject to increasing
amounts of hype and speculation. Initially, the promise behind cryptocurrencies
like Bitcoin was the ability to send frictionless global payments: anyone in the
world could act as a peer in Bitcoin’s peer-to-peer network and broadcast a
transaction that — without having to pay exorbitant fees — would send money
to anyone else in the world, regardless of their location, citizenship, or what
bank they used. This is achieved by the decentralization inherent in the open
consensus protocol, known as proof-of-work, that allows any peer to not only
broadcast transactions but also act to seal them into the official ledger.

While the realities of Bitcoin have shifted in the ensuing years, the land-
scape of cryptocurrencies has also shifted considerably. There are now thousands
of alternative cryptocurrencies, supporting more exotic functionalities than the
simple atomic transfer of money supported by Bitcoin. Ethereum, for example,
promises to act as a distributed consensus computer (the Ethereum Virtual Ma-
chine, or EVM for short) by enabling arbitrary stateful programs to be executed
by transactions, while Monero and Zcash promise to improve on the anonymity
achieved by Bitcoin transactions. Others don’t promise new functionalities but
instead aim to support the same functionality as Bitcoin in more cost-effective
ways; e.g., Zilliqa [15,8,29,18,16] and Cardano [14,6] incorporate respective ideas

ar
X

iv
:1

81
0.

08
42

0v
1

 [
cs

.C
R

]
 1

9
O

ct
 2

01
8

from the academic literature about achieving consensus without relying entirely
on proof-of-work.

Alongside this rapid expansion in the functionality of cryptocurrencies (or
indeed the general applicability of the underlying concept of a blockchain), there
has also been a genuine explosion of investment into these technologies. In July
2013, for example, there were 42 cryptocurrencies listed on the popular data
tracker CoinMarketCap,1 and the collective market capitalization was just over 1
billion USD. In July 2018, in contrast, there were 1664 cryptocurrencies, and the
collective market capitalization was close to 1 trillion USD. While comprehensive
in terms of deployed cryptocurrencies, this list does not even include many of
the recent “initial coin offerings” (ICOs) that have similarly attracted millions in
investment despite there having been many documented scams.23 Against this
backdrop of hype and investment, it is thus crucial to gain some insight into the
different types of functionalities offered by these many different cryptocurrencies,
to understand which coins offer truly novel features and are backed by genuine
development efforts, and which ones are merely hoping to cash in on the hype.

This paper takes a first step in this direction, by examining the entire land-
scape of cryptocurrencies in terms of the publicly available source code used to
support each one. While source code may not be the most accurate representa-
tion of a cryptocurrency (as, for example, the actual client may use a different
codebase), it does reflect the best practices of the open-source software commu-
nity, so we believe it to be a reasonable proxy for how a cryptocurrency does
(or should) represent itself. In particular, we begin by describing our collected
dataset in Section 4, where we can already observe that many listed cryptocur-
rencies are in fact tokens based on the Ethereum blockchain. We then move on in
Section 5 to a general identification of the ways in which cryptocurrencies copy
their ideas from those of others, and observe that Bitcoin is by far the most pop-
ular in this respect. Due to the dominance of Bitcoin and Ethereum, we explore
them in more detail in Sections 6 and 7 before concluding in Section 8.

2 Related Work

We treat as related research that measures either general properties of open-
source software, or research that measures properties of cryptocurrencies. In
terms of the former, there have been numerous papers measuring GitHub repos-
itories. For example, Hu et al. [11] and Thung et al. [30] measured the influence
of software projects according to their position of their repositories and develop-
ers in the GitHub social graph, and others have taken advantage of the volume
of source code available on GitHub to analyze common coding practices [35] or
how bugs vary across different programming languages [25].

In terms of the latter, there are by now many papers that have focused
on measuring properties of both the peer-to-peer networks [17,7,3,1] and the

1 https://coinmarketcap.com/historical/20130721/
2 https://deadcoins.com/
3 https://magoo.github.io/Blockchain-Graveyard/

https://coinmarketcap.com/historical/20130721/
https://deadcoins.com/
https://magoo.github.io/Blockchain-Graveyard/

blockchain data associated with cryptocurrencies [26,27,19,28,21,13,5,31], as well
as their broader ecosystem of participants [20,34,32,33]. Given the volume of re-
search, we focus only on those papers most related to our own, in that they
analyze properties across multiple cryptocurrencies, rather than within a single
one like Bitcoin. In terms of comparing Bitcoin and Ethereum, Gencer et al. [9]
compared the level of decentralization in their peer-to-peer networks and found,
for example, that Ethereum mining was more centralized than it was in Bit-
coin, but that Bitcoin nodes formed more geographic clusters. Azouvi et al. [2]
also compared their level of decentralization, in terms of the discussions on and
contributions to their GitHub repositories, and found that Ethereum was more
centralized in terms of code contribution and both were fairly centralized in
terms of the discussions. Gervais et al. [10] introduced a framework for identify-
ing the tradeoff between security and performance in any cryptocurrency based
on proof-of-work, and found that the same level of resilience to double-spending
attacks was achieved by 37 blocks in Ethereum as by 6 blocks in Bitcoin. Finally,
Huang et al. [12] compared the effectiveness of different mining and speculation
activities for 18 cryptocurrencies, and found that the profitability of both was
affected by when a cryptocurrency was listed on an exchange.

3 Background

Here we provide some brief background on the functionality of Bitcoin and
Ethereum, which are the two biggest cryptocurrencies in terms of their market
capitalization. As general terminology, we use cryptocurrency to refer to anything
with an exchangeable unit of value, coin to refer to a cryptocurrency with its
own dedicated blockchain, and token to refer to a cryptocurrency that operates
instead using the blockchain of another cryptocurrency (e.g., Ethereum).

Fundamentally, the main functionality offered by Bitcoin is the atomic trans-
fer of money from a sender (or set of senders) to a recipient (or set of recipients).
This is supported by a limited scripting language, known simply by the name
Script, which defines how transactions are created and verified. Bitcoin is also,
however, a standalone platform, and thus its codebase must do significantly
more than support this so-called transaction layer [4]. In particular, it must de-
fine the peer-to-peer network, by which clients can find and communicate with
each other, and the consensus protocol, by which they can come to agreement
on the transactions that have taken place.

Beyond the relatively simple functionality offered by Bitcoin, Ethereum al-
lows developers to create and deploy smart contracts onto the blockchain. These
are stateful programs, typically written in a language called Solidity, that can
be triggered by transactions and used to run (almost) arbitrary code. The only
limitation is their complexity, as every operation they perform has an associated
cost, and transactions have a maximum amount they are allowed to spend.

There are two special types of smart contracts, ERC20 and ERC721, that
define tokens: ERC20 tokens4 are designed to be currency, and thus are fungible,

4 https://github.com/ethereum/eips/issues/20

https://github.com/ethereum/eips/issues/20

Category # coins Representative examples

Animals 29 RabbitCoin, Birds
Computing 47 AI Doctor, Decentralized Machine Learning
Drugs 13 Cannation, KushCoin
Finance 22 iBank, Intelligent Investment Chain
Food 10 EggCoin, Olive
Gambling 17 CashBet Coin, CasinoCoin
Geography 12 Asiadigicoin, NewYorkCoin
Nation states 37 PutinCoin, Shekel, BritCoin
Outer space 17 Marscoin, SpaceChain
Metals & precious stones 37 GoldPieces, PlatinumBAR, Rubycoin
Religion 7 BiblePay, HalalChain

Table 1: Different categories of cryptocurrencies, based on the name of the coin, along
with some representative examples.

whereas ERC721 tokens may be non-fungible and thus support collectibles such
as CryptoKitties.5 At the most basic level, a token contract is a ledger mapping
owners (identified by their Ethereum address) to the amount of tokens that they
own, along with an associated set of rules determining how tokens are transferred
between owners.

4 Data Collection

In order to collect the source code associated with each cryptocurrency, we
started with the list maintained at CoinMarketCap,which is generally regarded
as one of the most comprehensive resources for cryptocurrency market data. The
site maintains not only market data for each cryptocurrency (its market capital-
ization, price, circulating supply, etc.), however, but also links to any websites,
blockchain explorers, or — crucially for us — source code repositories. We last
scraped the site on July 24 2018, at which point there were 1664 cryptocurren-
cies listed, with a cumulative market capitalization of 293B USD.

Of these cryptocurrencies, there were 866 categorized as a token rather than
as a coin. There were 366 cryptocurrencies with a stated price of $0.00, and
in fact 1468 (88%) had a stated price of less than $1.00. There were 276 cryp-
tocurrencies with an unknown circulating supply (and thus an unknown market
capitalization), and 924 (55.5%) had a market capitalization of over 1M USD.
The names of the cryptocurrencies were typically designed to evoke a specific
concept; e.g., wealth, computing, politicians, or existing fiat currencies. Based
on their names, we manually sorted all of the listed cryptocurrencies into the
categories shown in Table 1.

5 https://www.cryptokitties.co/

https://www.cryptokitties.co/

4.1 Source code repositories

Of the listed cryptocurrencies, 1123 had a link available to some source code
repository. We performed manual spot checking to ensure that the links were
legitimate, and in some cases replaced the links where the information was inac-
curate (for Bitcoin Cash, for example, the provided link was for the repositories
backing bitcoincash.org rather than the actual software code). Of these, 1108
pointed to GitHub (98.7%).

As should be expected, many of the cryptocurrencies had multiple software
repositories available; indeed, the links provided were to the lists of repositories
for a given GitHub organization, and in total there were 13,694 individual repos-
itories available. The vast majority of these repositories had been created after
October 2014, with a notable rise in frequency starting in April 2017. These
repositories typically fell into one of three categories: (1) integral to the cryp-
tocurrency itself, such as implementations of the reference client or supporting
libraries; (2) irrelevant, such as a different project by the same organization;
or (3) unchanged forks or mirrors of popular software projects, such as llvm.
Given our goal of differentiating between different cryptocurrencies, we sought
to isolate the first category of “meaningful” code.

Our initial hypothesis was that more integral repositories would be (1) bet-
ter maintained, (2) more popular, and (3) re-used more frequently. There are
several open-source tools for determining the “health” of the maintenance of
a GitHub repository [24], which typically measure the activity, level of contri-
bution, and responsiveness to pull requests and issues. In fact, there is even a
tool called CoinCheckup that does this specifically for cryptocurrencies.6 We
observed, however, that many of the repositories had a fairly low level of ac-
tivity, so this was not on its own a good way to distinguish between different
repositories. Another natural measure would be the total number of commits to
a repository, but this information is not readily accessible via the GitHub API.7

We thus measured activity according to the gap in time (in weeks) between the
current time and the last update of the repository, under the assumption that
this would be shorter for more active repositories.

In terms of the second two criteria, the most natural representation of pop-
ularity and reusability is the number of stars and forks [23]. We again found,
however, that stars were not a useful indication of whether or not a repository
contained relevant source code. For example, important meta-information re-
lated to a cryptocurrency such as its whitepaper or its improvement proposals
(IPs) was often contained in highly-starred repositories. We thus chose to ignore
stars and look solely at forks.

Finally, in terms of relevance, we favored repositories with a name identical or
close to that of the cryptocurrency, as well as ones that indicated they contained
source code (e.g., with ‘core’ in the name) or code otherwise relevant to the
operation of the cryptocurrency (e.g., ‘token’ or ‘contract’ for ERC20 tokens).

6 https://coincheckup.com/analysis/github
7 It is possible to derive it from information given for individual repositories, albeit in

a relatively inefficient manner, but not from an organization’s list of repositories.

bitcoincash.org
https://coincheckup.com/analysis/github

We also excluded repositories whose names contained terms that indicated they
were not relevant; e.g., ‘website’ or ‘docs.’ A complete list of these excluded
terms can be found in Table 3 in Appendix A.

In the end, we assigned a rating to each repository for a given cryptocurrency
according to: (1) the gap between its last update and the current date, to capture
activity (where this was subtracted from the rating, as a longer gap indicates
less activity); (2) its number of forks, to capture popularity and reuse; and
(3) information about the name of the repository, to capture relevance. For each
cryptocurrency, we then cloned the top 20% of the list of repositories, sorted from
high to low by these ratings (or cloned one repository, whichever was larger).
Even after compiling this list, we made various manual adjustments in order to
ensure that we had selected the “right” repositories. We cloned 2354 repositories
in total, which comprised roughly 100 GB of data.

4.2 Deployed source code

As evidenced by the 866 (52%) listed cryptocurrencies that were categorized as
tokens (and the fact that 74 of these even had ‘token’ in their name), it is popular
to launch new cryptocurrencies not as standalone coins, but as tokens that are
supported by existing cryptocurrencies. Of these, by far the most popular type
is an ERC20 token, supported by Ethereum. Of these listed tokens, 406 did not
have any source code link available. For ERC20 tokens that have been deployed,
however, it is often possible to obtain the contract code from another source: the
version deployed on the Ethereum blockchain itself is compiled bytecode, but it
is common practice to provide the Solidity code and display it on blockchain
explorers such as Etherscan.8

For these tokens, we thus chose to use Etherscan as a data source (in addition
to any provided repositories), in order to aid our Ethereum-based analysis in
Section 7. At the time that we scraped Etherscan, there were 612 ERC20 tokens
listed, identified by a name and a currency symbol (e.g., OmiseGO and OMG).
Of these, we found 438 with a match on CoinMarketCap, where we defined a
match as having (1) identical currency symbols, and (2) closely matching names.
(We couldn’t also require the name to be identical because in some cases the
name of the contract was somewhat altered from the name of the cryptocurrency;
e.g., SPANK instead of SpankChain.) We scraped the available contract code for
each of these tokens, which in all but 9 cases was Solidity code rather than just
on-chain bytecode. We thus ended up with 429 deployed ERC20 contracts.

5 Detecting Code Reuse

In this section, we attempt to identify the extent to which cryptocurrencies reuse
the codebases of others, in order to identify which cryptocurrencies incorporate
genuinely novel ideas and which ones largely derive their ideas from others. We

8 https://etherscan.io/

https://etherscan.io/

do so using several different techniques, ranging from very simplistic (seeing if
the name of one is a prefix of the name of another) to more complex. We refer
to the cryptocurrencies borrowing ideas from others as derivatives.

Most of our methods label one cryptocurrency as a derivative of another if it
has at least one repository that appears as derived from a repository of the sec-
ond cryptocurrency. This means that, for example, if a cryptocurrency copied the
Bitcoin repository but its actual platform consists largely of repositories written
from scratch, we may unfairly label it as a derivative of Bitcoin. On the other
hand, if we tried to do otherwise then we might unfairly reward cryptocurrencies
that copy the Bitcoin repository and then create many other repositories that
do not contribute to the functioning of the platform (e.g., web templates). Ul-
timately, without significantly more advanced analysis to determine how repos-
itories are linked and which ones meaningfully support the platform, this is a
potential limitation that we must accept in our analysis that follows.

5.1 Name derivations

As a first simple method, we observed that many cryptocurrencies attempt to
profit from the name recognition of popular cryptocurrencies by using a simi-
lar name; e.g., Bitcoin Planet or Ethereum Gold. We thus decided to identify
one cryptocurrency as a derivative of another cryptocurrency if the name of the
second is a prefix of the name of the first (as in the examples above), manually
excluding cryptocurrencies whose names are common words and thus might be
prefixes anyway (e.g., Crypto). Using this method, we identified 28 cryptocurren-
cies with one derivative, and 8 with two derivatives (0x, Aurora, Dynamic, Hyper,
Litecoin, Monero, Sentinel, and Waves). While they did not exactly match our
prefix method, there were four cryptocurrencies whose names seem designed to
evoke the ideas behind the popular “privacy coin” Zcash: ZClassic, ZCoin, Zoin,
and Zero. Finally, the two most derived cryptocurrencies are — unsurprisingly —
Bitcoin (with 17 derivatives) and Ethereum (with 6). While this method already
yields some interesting insights into the extent to which the Bitcoin brand has
been borrowed, the name of a cryptocurrency is not necessarily indicative of the
contents of its underlying codebase. We thus continue to develop more code-
specific methods for determining derivatives.

5.2 Git forks

Next, we considered the Git forks of a cryptocurrency, meaning the cryptocur-
rencies that were created as a fork of the GitHub repository of another cryp-
tocurrency. To do this, we identified (by hash) every commit to every repository
we cloned. We then mapped commits to the lists of the repositories in which they
appeared, and considered the oldest repository containing that commit to be the
original cryptocurrency and all other repositories in the list to be derivatives.
To elevate this to the level of cryptocurrencies,we labelled a cryptocurrency
as a derivative of another one if any of its repositories were forked from any
repositories of the second one. The results are in Figure 1. The most immediate

Bitc
oin

Red
dC

oin

Eu
rop

eC
oin

Eth
ere

um

Blaz
eC

oin

Lit
eco

in

Mon
ero

Sto
rjc

oin
 X

Eth
ere

um
 Clas

sic Lis
k

DigiB
yte

Ph
oe

nix
coi

n

Ste
em

 Dolla
rs

XGOX

BitS
ha

res

Em
era

ld
Cryp

to

Loy
alC

oin
Te

lco
in

Den
tac

oin

Fac
tom

Cryptocurrencies

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f d
er

iv
at

iv
es

Fig. 1: The cryptocurrencies with three or more derivatives, where a derivative is defined
as a cryptocurrency that has a repository initially created by the first one.

observation is that this method captures significantly more derivatives than the
name-based one, and that it reinforces the popularity of Bitcoin and Ethereum
(according to this method, Bitcoin has 163 forks and Ethereum has 21), as well
as of Litecoin and Monero.

There are also, however, several cryptocurrencies with many Git forks that
are less well-known; e.g., Reddcoin and EuropeCoin. These are due to being the
earliest cryptocurrencies to incorporate independently popular repositories, and
thus highlight the main limitation of this method; namely, that the earliest cryp-
tocurrency to fork a popular general-purpose library or other integral software
development tool will be incorrectly labelled as popular. In addition, it doesn’t
consider “intermediate” derivatives; e.g., Litecoin and Peercoin are both forks of
Bitcoin that have themselves been forked many times.

To get a sense of how much this method underestimated code reuse, we
considered the file addrman.cpp, which is the way addresses are managed in
Bitcoin’s peer-to-peer network and is one of the most reused cryptocurrency-
specific files we saw. It appeared in a repository for 536 other cryptocurrencies,
meaning there are many potential derivatives of Bitcoin that this method does
not capture.

5.3 Copyright derivations

Most open-source repositories are not written from scratch, but instead make use
of established libraries or other code. This is expected (and in fact encouraged),
as long as the authors acknowledge the original authors. We thus decided next
to use this copyright information in order to identify potential derivatives.

More specifically, we looked in every repository to see if any COPYING files
were available. If they were, then we scraped the comments concerning copyright

Bitc
oin

Pe
erc

oin

Nov
aco

in

Lit
eco

in
Dash

Blac
kC

oin

Eth
ere

um PIV
X

Mon
ero

Zcas
h

Em
erc

oin Nxt

Dog
eco

in

Byte
coi

n

Ph
oe

nix
coi

n
ZCoin

Bitc
ore

Cryptocurrencies

0

100

200

300

400

500

Nu
m

be
r o

f d
er

iv
at

iv
es

Fig. 2: The cryptocurrencies with five or more derivatives, where a derivative is defined
as a cryptocurrency that contains information copyrighted by the first one.

from the beginning of these files. If not, then we went through every source
code file in the repository and scraped the copyright information there instead,
where we identified source code according to the file extensions maintained by
the CLOC (Count Lines of Code) library.9 Either way, we then considered the
collective authors of the repository to be the union of all of the individual authors
identified by the copyright lines.

Given this set of collective authors, our next task was to assign them to
a specific cryptocurrency. Luckily, many of the cryptocurrencies do not identify
contributors by their individual names, but rather by the name of the cryptocur-
rency; e.g., “Bitcoin Developers” or “The go-ethereum Authors”. To handle the
several prominent exceptions to this rule, we manually created a mapping from
popular individual contributors to the coins with which they were associated;
e.g., Pieter Wuille for Bitcoin. This also covered cases in which the name of the
coin was altered slightly (e.g., PPCoin for Peercoin) and in which the copyright
was given to the organization rather than the cryptocurrency (e.g., IOHK for
Cardano). We did not include contributors to popular open-source libraries (e.g.,
Boost and LevelDB) in order to keep our focus on cryptocurrency-specific code
rather than standard software development tools.

With this information, we then labelled one cryptocurrency as a derivative
of another if the copyright lines in the first included the name of the second
(or the name of one of its popular contributors). The results are in Figure 2.
This graph again demonstrates the dominance of Bitcoin, as well as of several
cryptocurrencies (most notably Litecoin, Peercoin, and Novacoin) that have also
been very popular to fork. It also comes much closer to the expected number of
derivatives given the occurrence of addrman.cpp discussed in Section 5.2.

9 https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

Fig. 3: In the largest connected component of the graph of copyright derivations, the
cryptocurrencies with degree over 7, where the size (and color) of the node is propor-
tional to its degree.

In addition to capturing a richer type of derivation, this approach also had
the benefit over the previous ones that it did not flatten transitive relationships;
i.e., if X forked from Y, which was itself a fork of Z, then X would be labelled as a
derivative of both Y and Z, rather than just Z. It thus builds a tree of derivations,
such as that seen on the (currently unmaintained) website Map of Coins.10 A
version of this tree with the most derived (or derivative) cryptocurrencies can be
seen in Figure 3. This graph reinforces the results from Figure 2, in terms of which
cryptocurrencies have the most derivatives. It also highlights cryptocurrencies
like BumbaCoin, which incorporate code from many different (10) sources.

While this method nicely captures code reuse, it goes perhaps a bit too far in
labelling derivatives; again, code reuse is encouraged as a form of library support
and using or modifying copyrighted code from another cryptocurrency does not
indicate a lack of other novel ideas. Thus, our final method considers not just
whether or not a cryptocurrency uses the codebase of another, but the actual
proportion of code that goes unmodified.

5.4 File derivations

Finally, we looked for the most direct form of derivation: taking another reposi-
tory and using it without any modification. To identify this, we computed and
stored the hash of every source code file in our cloned repositories; as in Sec-
tion 5.3, we identified source code file extensions using the CLOC library. We
then computed a similarity score Shash between a repository A and another one
B by counting the number of files in A with an identical file in B (meaning
the hash was the same), and then dividing by the total number of files in A.
To elevate this to the level of cryptocurrencies C1 and C2, we then computed
Shash(C1, C2) as

Shash(C1, C2) =

∑
A∈C1

Shash(A,∪B∈C2
B)∑

A∈C1
files in A

;

10 http://mapofcoins.com

http://mapofcoins.com

Fig. 4: The largest connected component of the graph formed by creating an edge from
A to B if Shash(A,B) > 0.7, along with labels for the most prominent clusters. The
nodes are colored according to the categories from Table 1.

i.e., for each repository A contributing to C1 we counted the number of files that
were identical to a file in any repository contributing to C2, and then divided
this by the total number of files across all repositories contributing to C1.

We ran this for every pair of cryptocurrencies A and B (for both Shash(A,B)
and Shash(B,A), since they are not symmetric), and used the results to create
a graph in which nodes represent cryptocurrencies and there is a directed edge
from A to B if Shash(A,B) > 0.7. This resulted in a graph with 445 nodes and
1854 edges, the largest connected component of which can be seen in Figure 4
(consisting of 302 nodes and 1599 edges).

Most of this component consists of Bitcoin forks, so we defer further discus-
sion of these clusters to Section 6. The exception is cluster 9, which consists of
one cryptocurrency (Zeepin) that is 100% similar to 16 other cryptocurrencies.
The reason is simple: its repository consisted solely of an LGPL-3.0 license, so it
matched other repositories with the same version of this license. At the time we
scraped CoinMarketCap, Zeepin had a market capitalization of 23 million USD.

6 Bitcoin and Its Derivatives

In Section 5, we saw a clear dominance of Bitcoin in terms of the reuse of its code
by other cryptocurrencies. We now explore these Bitcoin forks in more detail, by
comparing them not only against one version of the Bitcoin codebase, but against

20
09

-08
-30

20
10

-02
-28

20
10

-08
-29

20
11

-02
-28

20
11

-08
-31

20
12

-02
-29

20
12

-08
-29

20
13

-03
-01

20
13

-09
-02

20
14

-03
-03

20
14

-09
-03

20
15

-03
-03

20
15

-09
-03

20
16

-03
-05

20
16

-09
-05

20
17

-03
-05

20
17

-09
-05

20
18

-03
-05

Versions of Bitcoin code

0

10

20

30

40

50

60

70

Nu
m

be
r o

f d
er

iv
at

iv
es

40%
50%
60%
70%

Fig. 5: For different percentage overlaps, the number of cryptocurrencies matching a
given version of the Bitcoin codebase in terms of the hash similarity.

multiple versions reflecting its evolution over time. To do this, we first created
a list of all commits to the Bitcoin repository, starting from August 2009, and
collected one version of the codebase every six months after that. We labelled
these versions from 1 to 18, but stress that these labels are not correlated with
any official releases. We then re-ran the hash similarity code from Section 5.4
against each of these versions, assigning a cryptocurrency to a single version by
picking the one with which it had the highest overlap. The results are in Figure 5,
and demonstrate an increase in the number of derivatives over time, with a clear
spike at version 9 (which represents the codebase in September 2013).

Hashing is a very brittle method of comparison, however, and what we saw
copied far more often than the exact file contents was Bitcoin’s directory struc-
ture. We thus also compared the directory structure of two repositories; i.e., we
computed a similarity score Sdir between a repository A and another one B by
counting the number of files in A with an identical filename in B (meaning the
name and path was the same), and then dividing by the total number of files
in A. We elevated this to the level of cryptocurrencies in the same way as we
did in Section 5.4 for Shash. For completeness, the results are in Figure 7 in Ap-
pendix A, and demonstrate that the directory structure (and in particular the
one associated with older versions of the codebase, prior to its re-organization
due to SegWit adoption) is heavily borrowed by other cryptocurrencies.

Finally, we revisit the graph in Figure 4, as this connected component is
almost entirely associated with Bitcoin forks. In particular, we can briefly explain
clusters 1-8 as follows:

– 1. The node at the center of this cluster, Akuya Coin, has a directory struc-
ture similar (63%) to a version of the Bitcoin codebase from 2013, but many
(32%) of its files are empty and thus have the same hash, which makes it
appear similar to 76 other Bitcoin forks.

– 2 and 3. Both of these clusters also have a directory structure similar to older
versions of the Bitcoin codebase (the average directory similarity was 89% for
cluster 2 and 82% for cluster 3), and are similar to the same cryptocurrency
(BumbaCoin). Many also incorporate the Zerocoin code:11 84% of the nodes
in cluster 2 and 65% of the nodes in cluster 3. This is notable given that this
code comes with the emphatic warning “THIS CODE IS UNMAINTAINED
AND HAS KNOWN EXPLOITS. DO NOT USE IT.” In total it is included
in repositories for 97 different cryptocurrencies.

– 4 and 5. These clusters were the ones most similar to Bitcoin: on average
we had Shash = 0.51 and Sdir = 0.80 for cluster 4 and Shash = 0.37 and
Sdir = 0.96 for cluster 5. For cluster 4, the matching versions were also in
quite a tight range from September 2013 to September 2014 (our versions 9
to 11), whereas most other clusters ranged more evenly across all 18 versions.

– 6 and 7. These clusters consisted largely of forks from Litecoin: 100% of
cluster 6 had the file scrypt.c, which is unique to Litecoin, and indeed
100% identified as Litecoin derivatives using the copyright method from
Section 5.3. 64% of cluster 7 had files with scrypt in the name, although
only 21% identified as copyright derivatives of anything other than Bitcoin.

– 8. The nodes in this cluster were on average newer than the others (with the
first repository created in June 2015), and indeed their directory structure
is more consistent with newer versions of the Bitcoin codebase.

7 Ethereum as a Platform

As discussed in Sections 3 and 4.2, it is increasingly popular to deploy cryp-
tocurrencies as tokens on the Ethereum blockchain; indeed, over half of the
cryptocurrencies listed on CoinMarketCap fell into this category. This section
thus explores this type of cryptocurrency deployment, focusing again on the ex-
tent to which ERC20 tokens are similar to or different from each other. As an
ERC20 token consists of just a single file, our methods from the previous sections
do not apply here so we develop new methods for identifying similarities.

The basic functionality of an ERC20 token — allowing the transfer of to-
kens from one holder to another — defines a contract type called Basic (or
BasicToken) or — with one slight functional difference — ERC20. There are, how-
ever, many additional types that ERC20 tokens can have. For example, if they
want to allow for the creation of new tokens they can be Mintable and if they
want to allow for the destruction of existing tokens they can be Destructible

or Burnable. These types are not standardized, and in fact new types can be
defined and used within the Solidity code for a contract.

To identify the types of a given token, we identified all lines in its con-
tract of the form contract X is Y {, where X is the name of the contract
and Y is its type. Some intermediate types themselves appear as names (e.g.,
contract Mintable is Ownable), which we exclude from our final results but
carry over transitively to the higher-level contract names; e.g., if X is Mintable

11 https://github.com/Zerocoin/libzerocoin

https://github.com/Zerocoin/libzerocoin

0 200 400 600 800 1000
Contract types

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

deployed
repositories

(a) Types

0 5 10 15 20 25
Solidity versions

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

deployed
repositories

(b) Solidity version

0 20 40 60 80
SafeMath versions

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

deployed
repositories

(c) SafeMath version

Fig. 6: When ranked from most to least popular, the cumulative percentage of contracts
matching three different features, for both the set of deployed contracts and the ones
found in repositories.

and Mintable is Ownable then X is both Mintable and Ownable. This resulted
in a map from the higher-level token names to a list of all of their types.

Beyond these types, there are several ERC20 templates whose reuse we
sought to identify. Based on a manual inspection of a random subset of con-
tracts, we chose five points of distinction: first, which version the contract used
of (1) Solidity and (2) the SafeMath library, which provides safe arithmetic
operations. Second, we considered whether or not it used (3) the definition of
StandardToken created by the FirstBlood token; (4) the UpgradeableToken

type, created by the Golem token; or (5) a template by OpenZeppelin,12 who
also created SafeMath.

For the version of Solidity, we looked for lines starting with pragma solidity

and extracted the version from what followed (typically of the form 0.4.X). To
determine the version of SafeMath, we first used CLOC to strip the comments
from the .sol file. We then identified the lines of code that defined the SafeMath
library (starting with either contract SafeMath { or library SafeMath { and
ending with }), and hashed this substring to form a succinct representation.
Finally, to identify the use of templates, we simply looked at whether or not the
file explicitly mentioned the relevant keywords.

We extracted this information from all Solidity files, whether deployed on
the Ethereum blockchain (and thus scraped from Etherscan, as described in
Section 4.2) or contained in a repository.13 For the types, Solidity and SafeMath
versions, we ordered them from most to least popular and plotted this as a CDF,
as seen in Figure 6; i.e., we plotted the percentage y of all contracts that had
one of the top x attributes. For the templates, the results are in Table 2.

The relatively long tails in all of the figures indicate a relatively high level of
diversity among these features in both deployed contracts and those still under
development. For example, the Solidity version most popular among deployed
contracts (version 18) was still used in only 23% of them. Whereas Figures 6b
and 6c show similar curves for both sets of contracts, Figure 6a shows a much
longer tail for contracts contained in repositories, with 246 distinct types in

12 https://openzeppelin.org/
13 Interestingly, these sets were non-intersecting; i.e., there was no contract in a repos-

itory that was identical to a deployed one.

https://openzeppelin.org/

Deployed Repositories

% # %

FirstBlood 134 30.8 190 2.5
Lunyr 22 5.1 19 0.2
OpenZeppelin 72 16.6 245 3.2
SafeMath 287 65.9 400 5.2

Table 2: The number of contracts of each type (deployed or in repositories) that are
derived from one of the first three templates, or using the SafeMath library, as well as
the percentage of all contracts this represents.

deployed contracts and 1002 in ones in repositories. This indicates — as should
perhaps be expected — that (1) there are just many more possibilities for con-
tract types than for versions, and (2) there is greater experimentation with types
in contracts still under development. Even among deployed contracts, 129 out
of 429 had a type that did not appear in any other deployed contracts, and 148
of the 246 distinct types appeared in only a single contract.

Table 2 also demonstrates the relatively high diversity across contracts, with
no one template being used in a dominant way. Even though 65.9% of deployed
contracts use SafeMath, Figure 6c demonstrates that there is quite a lot of variety
within this category; indeed, there were 90 different versions of SafeMath used
in deployed contracts (and 93 different versions in the repositories). Again, we
see significantly more experimentation in contracts still under development.

Finally, we view the points of similarity that did exist as operating primarily
in support of the safety of deployed contracts. For example, among the 20 most
popular types across both deployed and repository contracts, five of them defined
the basic ERC20 functionality, and six of them were related to safety in terms
of either including a standard library or in defining an owner who could take
action if something went wrong. The same is true of the usage of FirstBlood’s
StandardToken, which was the first safe implementation of this type, or of the
SafeMath library. We thus view these similarities as a sign of good development
practices, rather than the copying of ideas.

8 Conclusions

This paper considered diversity in the cryptocurrency landscape, according to
the source code available for each one, in order to identify the extent to which new
cryptocurrencies provide meaningful innovation. This was done by examining the
source code for over a thousand cryptocurrencies, and — in the case of ERC20
tokens — the deployed code of hundreds more. While more sophisticated static
analysis of the source code would likely yield further insights, even our relatively
coarse methods clearly indicated the dominance of Bitcoin and Ethereum, as well
as the extent to which creating a standalone platform is a significantly greater
undertaking (leading to the reuse of much of the Bitcoin codebase) than defining
just the transaction semantics of an Ethereum-based token.

Acknowledgements

The authors were supported in part by EPSRC Grant EP/N028104/1 and in part
by the EU H2020 TITANIUM project under grant agreement number 740558.

References

1. M. Apostolaki, A. Zohar, and L. Vanbever. Hijacking bitcoin: Routing attacks
on cryptocurrencies. In 2017 IEEE Symposium on Security and Privacy, pages
375–392, San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.

2. S. Azouvi, M. Maller, and S. Meiklejohn. Egalitarian society or benevolent dictator-
ship: The state of cryptocurrency governance. In Proceedings of the 5th Workshop
on Bitcoin and Blockchain Research, 2018.

3. A. Biryukov, D. Khovratovich, and I. Pustogarov. Deanonymisation of clients in
bitcoin P2P network. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 14,
pages 15–29, Scottsdale, AZ, USA, Nov. 3–7, 2014. ACM Press.

4. J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten.
SoK: Research perspectives and challenges for bitcoin and cryptocurrencies. In
2015 IEEE Symposium on Security and Privacy, pages 104–121, San Jose, CA,
USA, May 17–21, 2015. IEEE Computer Society Press.

5. J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow.
Elliptic curve cryptography in practice. In N. Christin and R. Safavi-Naini, editors,
FC 2014, volume 8437 of LNCS, pages 157–175, Christ Church, Barbados, Mar. 3–
7, 2014. Springer, Heidelberg, Germany.

6. B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In J. B. Nielsen and V. Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98, Tel
Aviv, Israel, Apr. 29 – May 3, 2018. Springer, Heidelberg, Germany.

7. J. A. D. Donet, C. Pérez-Solà, and J. Herrera-Joancomart́ı. The bitcoin P2P
network. In R. Böhme, M. Brenner, T. Moore, and M. Smith, editors, FC 2014
Workshops, volume 8438 of LNCS, pages 87–102, Christ Church, Barbados, Mar. 7,
2014. Springer, Heidelberg, Germany.

8. I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-ng: A scalable
blockchain protocol. In Proceedings of NSDI 2016, 2016.

9. A. E. Gencer, S. Basu, I. Eyal, R. V. Renesse, and E. G. Sirer. Decentraliza-
tion in Bitcoin and Ethereum networks. In Proceedings of the 22nd International
Conference on Financial Cryptography and Data Security (FC), 2018.

10. A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun.
On the security and performance of proof of work blockchains. In E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16,
pages 3–16, Vienna, Austria, Oct. 24–28, 2016. ACM Press.

11. Y. Hu, J. Zhang, X. Bai, S. Yu, and Z. Yang. Influence analysis of GitHub repos-
itories. SpringerPlus, 5(1), 2016.

12. D. Y. Huang, K. Levchenko, and A. C. Snoeren. Measuring profitability of alter-
native crypto-currencies. In Proceedings of the 22nd International Conference on
Financial Cryptography and Data Security (FC), 2018.

13. G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn. An empirical analysis of
anonymity in Zcash. In Proceedings of the USENIX Security Symposium, 2018.

14. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388, Santa Barbara,
CA, USA, Aug. 20–24, 2017. Springer, Heidelberg, Germany.

15. E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing
Bitcoin security and performance with strong consistency via collective signing. In
Proceedings of USENIX Security 2016, 2016.

16. E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and B. Ford. Omniledger: A
secure, scale-out, decentralized ledger. In Proceedings of the 39th IEEE Symposium
on Security & Privacy, 2018.

17. P. Koshy, D. Koshy, and P. McDaniel. An analysis of anonymity in bitcoin using
P2P network traffic. In N. Christin and R. Safavi-Naini, editors, FC 2014, volume
8437 of LNCS, pages 469–485, Christ Church, Barbados, Mar. 3–7, 2014. Springer,
Heidelberg, Germany.

18. L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena. A se-
cure sharding protocol for open blockchains. In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages 17–30, Vi-
enna, Austria, Oct. 24–28, 2016. ACM Press.

19. S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage. A fistful of bitcoins: characterizing payments among men with no
names. In Proceedings of the 2013 Internet Measurement Conference (IMC), pages
127–140, 2013.

20. T. Moore and N. Christin. Beware the middleman: Empirical analysis of Bitcoin-
exchange risk. In A.-R. Sadeghi, editor, FC 2013, volume 7859 of LNCS, pages
25–33, Okinawa, Japan, Apr. 1–5, 2013. Springer, Heidelberg, Germany.

21. M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan,
J. Hennessey, A. Miller, A. Narayanan, and N. Christin. An empirical analysis of
linkability in the Monero blockchain. Proceedings on Privacy Enhancing Technolo-
gies, 2016(3):143–163, 2018.

22. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. bitcoin.org/
bitcoin.pdf.

23. M. Papamichail, T. Diamantopoulos, and A. Symeonidis. User-perceived source
code quality estimation based on static analysis metrics. In 2016 IEEE Interna-
tional Conference on Software Quality, Reliability, and Security (QRS), 2016.

24. pelson. Github repository health report. https://github.com/pelson/

repohealth.info.

25. B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A large scale study of programming
languages and code quality in github. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE), pages
155–165, 2014.

26. F. Reid and M. Harrigan. An analysis of anonymity in the Bitcoin system. In
Security and privacy in social networks, pages 197–223. Springer, 2013.

27. D. Ron and A. Shamir. Quantitative analysis of the full Bitcoin transaction graph.
In A.-R. Sadeghi, editor, FC 2013, volume 7859 of LNCS, pages 6–24, Okinawa,
Japan, Apr. 1–5, 2013. Springer, Heidelberg, Germany.

28. M. Spagnuolo, F. Maggi, and S. Zanero. BitIodine: Extracting intelligence from
the bitcoin network. In N. Christin and R. Safavi-Naini, editors, FC 2014, volume
8437 of LNCS, pages 457–468, Christ Church, Barbados, Mar. 3–7, 2014. Springer,
Heidelberg, Germany.

bitcoin.org/bitcoin.pdf
bitcoin.org/bitcoin.pdf
https://github.com/pelson/repohealth.info
https://github.com/pelson/repohealth.info

29. E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,
I. Khoffi, and B. Ford. Keeping authorities“honest or bust” with decentralized
witness cosigning. In 2016 IEEE Symposium on Security and Privacy, pages 526–
545, San Jose, CA, USA, May 22–26, 2016. IEEE Computer Society Press.

30. F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang. Network structure of social
coding in GitHub. In Proceedings of the 17th European Conference on Software
Maintenance and Reengineering, 2013.

31. M. Vasek, J. Bonneau, R. Castellucci, C. Keith, and T. Moore. The bitcoin brain
drain: Examining the use and abuse of bitcoin brain wallets. In J. Grossklags and
B. Preneel, editors, FC 2016, volume 9603 of LNCS, pages 609–618, Christ Church,
Barbados, Feb. 22–26, 2016. Springer, Heidelberg, Germany.

32. M. Vasek and T. Moore. There’s no free lunch, even using bitcoin: Tracking the
popularity and profits of virtual currency scams. In R. Böhme and T. Okamoto,
editors, FC 2015, volume 8975 of LNCS, pages 44–61, San Juan, Puerto Rico,
Jan. 26–30, 2015. Springer, Heidelberg, Germany.

33. M. Vasek and T. Moore. Analyzing the Bitcoin Ponzi scheme ecosystem. In
Proceedings of the 5th Workshop on Bitcoin and Blockchain Research, 2018.

34. M. Vasek, M. Thornton, and T. Moore. Empirical analysis of denial-of-service at-
tacks in the bitcoin ecosystem. In R. Böhme, M. Brenner, T. Moore, and M. Smith,
editors, FC 2014 Workshops, volume 8438 of LNCS, pages 57–71, Christ Church,
Barbados, Mar. 7, 2014. Springer, Heidelberg, Germany.

35. J. Zhu, M. Zhou, and A. Mockus. Patterns of folder use and project popularity: A
case study of Github repositories. In Proceedings of the 8th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, 2014.

A Extra Tables and Figures

Concepts Excluded terms

Binaries binaries
Documentation docs, document, papers, whitepaper, wiki
Improvement proposals (IPs) [̂a-z]1,2ips

Other electrum, explorer, faucet, vanitygen
Packaging docker, homebrew, install
Testing example, test
Tools kit, lib, plugin, sdk, service, tools
User interface android, gui, ios, macos, mobile, window
Website .com, .info, .io, .net, .org, -org, site, website, www

Table 3: The terms which, if we encountered them in the name of a repository, led to the
exclusion of that repository from further consideration. We added manual exceptions
to these where appropriate (e.g., allowing the ‘ips’ pattern for the CHIPS and Vipstar
Coin cryptocurrencies).

20
09

-08
-30

20
10

-02
-28

20
10

-08
-29

20
11

-02
-28

20
11

-08
-31

20
12

-02
-29

20
12

-08
-29

20
13

-03
-01

20
13

-09
-02

20
14

-03
-03

20
14

-09
-03

20
15

-03
-03

20
15

-09
-03

20
16

-03
-05

20
16

-09
-05

20
17

-03
-05

20
17

-09
-05

20
18

-03
-05

Versions of Bitcoin code

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f d
er

iv
at

iv
es

40%
50%
60%
70%

Fig. 7: For different percentage overlaps, the number of cryptocurrencies matching a
given version of the Bitcoin codebase in terms of the directory similarity.

	Why is a Ravencoin Like a TokenDesk? An Exploration of Code Diversity in the Cryptocurrency Landscape
	Pierre Reibel, Haaroon Yousaf, and Sarah Meiklejohn

